发布单位:泰科施普(北京)技术有限公司 发布时间:2022-7-20
各种---因所含化学成分的不同而反映出拉曼光谱的差异,拉曼光谱在---研究中的应用包括:
(1)---化学成分分析
薄层色谱(tlc)能对---进行有效分离但无法获得各组份化合物的结构信息,而表面增强拉曼光谱(sers)具有峰形窄、灵敏度高、选择性好的优点,可对---化学成分进行高灵敏度的检测。利用tlc的分离技术和sers的指纹性鉴定结合,是一种在tlc原位分析---成分的新方法。
(2)---的无损鉴别
由于拉曼光谱分析,无需破坏样品,因此能对---样品进行无损鉴别,这对名贵中---的研究---重要。
(3)---的稳定性研究
利用拉曼光谱动态------的变质过程,这对---的稳定性预测、监控药材的具有直接的指导作用。
(4)中药的优化
对于---和---这一复杂的混合物体系,不需任何成分分离提取直接与---和细胞作用,利用拉曼光谱无损采集---和细胞的光谱图,观察---和细胞的损伤程度,研究其药理作用,并进行中药材和方剂的优化研究。
1、拉曼光谱易受荧光的影响、因此对发荧光宝石的检测会产生一定的影响。
2、对于不透明或透明度差的宝石,利用拉曼光谱技术进行检测可能会在宝石表面留下痕迹而成为有损检测。
3、应用拉曼光谱鉴定宝石,是一种类比法,有时会受到标准拉曼图谱库的---,尤其是对一些罕见宝石更是如此。此外对于某些颗粒细小的多晶集合体类玉石,很难得到有效的拉曼图谱。
拉曼光谱法是研究化合物分子受光照射后所产生的散射,散射光与入射光能级差和化合物振动频率、转动频率的关系的分析方法。
与红外光谱类似,拉曼光谱是一种振动光谱技术。所不同的是,前者与分子振动时偶极矩变化相关,而拉曼效应则是分子极化率改变的结果,被测量的是非弹性的散射辐。
一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。
电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散射光谱是分子的振动-转动光谱。用远红外光波照射分子时,只会引起分子中转动能级的跃迁,得到纯转动光谱。
拉曼光谱的优点在于它的快速,准确,测量时通常不破坏样品(固体,半固体,液体或气体),样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,可以有效地和光纤联用。
这也意味着谱带信号可以从包封在任何对激光透明的介质,如玻璃,塑料内,或将样品溶于水中获得。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能很---。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种---说简便(可以使用单变量和多变量方法以及校准。
这些谱线一般被认为是---。宇宙中的高能粒子辐照在ccd探测器上会导---子的产生进而被相机解释为光的信号。---在时间和产生的光谱位移上完全是随机的,它们有很大的强度、类似发射谱线、半高宽较小(<1.5m-1)。为确认---的存在,你可马上重新扫描光谱会发现峰的消失。如果谱线依然存在,则很有可能是室内光线的干扰,可参见q3问题的解答。
---随着扫描---时间的增加出现的概率会增加,因此当你长时间扫描一个光谱时,必须避免---在光谱中的出现,这可以通过软件中---去除能完成。这是一些软件中包含的实验设置功能,当使用时,将在同一样品位置扫描三次(相当于积分三次),软件将比较这三次扫描获得的光谱并去除没有在所有光谱中出现的尖锐峰。